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Chapter 10. Coupled Oscillations 
   
(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 
12.) 

In Chapter 2, we studied systems that exhibit oscillations in their response, either 
naturally or when driven by an external force. We now generalized the problem to 
include situations where not only multiple oscillation modes or frequencies are possible, 
but also when there are interactions amongst the different oscillating components of a 
given system. This leads us to the study of the more complicated topic of coupled 
oscillations. 

10.1 A Simple Example – Two Coupled Oscillators 
We consider the problem of two particles of similar mass M  connected by a spring of 
constant !

12
, and further each particle connected to fixed points with springs of constant 

! . The motion of particles is restricted to direction along the x-axis , so the system has 
two degrees of freedom x

1
 and x

2
 that give the displacement of the masses from their 

respective equilibrium position (see Figure 10-1). 

The kinetic and potential energies of the system is given by 
 

 
 

T =
1

2
M !x

1

2
+ !x

2

2( ),  (10.1) 

 
and 
 

 U =
1

2
! x

1

2
+ x

2

2( ) +
1

2
!
12
x
2
" x

1( )
2

,  (10.2) 

 
respectively. Using L = T !U  for the Lagrangian, we can easily calculate the equations 
of motion to be 
 

 
 

M!!x
1
+ ! +!

12( )x1 "!12x2 = 0

M!!x
2
+ ! +!

12( )x2 "!12x1 = 0.
 (10.3) 

 
Because we expect oscillatory motions for the systems response, we attempt a solution of 
the form 
 
 x

k
t( ) = B

k
e
i! t
, k = 1, 2  (10.4) 

 
with B

k
 the complex amplitudes and !  a frequency of oscillation. As we will see, 

B
k
 and !  can take different values depending on the mode of oscillation. 
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Figure 10-1 – Two masses connected by a spring to each other and by other springs to 
fixed points. 

Using equations (10.4) along with 
 
!!x
k
= !"

2
x
k
, we can transform equations (10.3) to 

 

 
!M"

2
B
1
e
i" t

+ # +#
12( )B1e

i" t
!#

12
B
2
e
i" t

= 0

!M"
2
B
2
e
i" t

+ # +#
12( )B2e

i" t
!#

12
B
1
e
i" t

= 0.
 (10.5) 

 
Regrouping terms and simplifying (by dropping the common exponential term), this 
equation can be written in a matrix form as 
 

 
! +!

12
"# 2

M( ) "!
12

"!
12

! +!
12
"# 2

M( )

$

%
&
&

'

(
)
)

B
1

B
2

*
+,

-
./
= 0.  (10.6) 

 
As usual, for this system of equations to have a non-trivial solution the determinant of the 
matrix on the left side of equation (10.6) must vanish. That is,  
 

 
! +!

12
"#

2
M( ) "!

12

"!
12

! +!
12
"#

2
M( )

= 0. (10.7) 

 
The expansion of this determinant yields the so-called characteristic equation of the 
system 
 
 ! +!

12
"#

2
M( )

2

"!
12

2
= 0,  (10.8) 

 
or, if we take the square root, 
 
 ! +!

12
"#

2
M = ±!

12
.  (10.9) 

 
Solving for ! , we find the characteristic frequencies (or eigenfrequencies, or 
eigenvalues) of the system. In this case, there are four frequencies: ±!

1
 and ±!

2
, with 

 



189 

 !
1
=

" + 2"
12

M
, !

2
=

"

M
.  (10.10) 

 
If we set ! = ±!

1
 in equations (10.4) and insert it in equation (10.6), we find that 

B
1
= !B

2
. Similarly, if we set ! = ±!

2
 in equations (10.4) and insert it in equation 

(10.6), we find that B
1
= B

2
. If we associate one amplitude constant for each 

eigenfrequency, i.e., B
i

±
 for ±!

i
, we can write the complete solution to the system of 

equations (10.6) as 
 

 
x
1
t( ) = B

1

+
e
i!1t + B

1

"
e
" i!1t + B

2

+
e
i!2 t + B

2

"
e
" i!2 t

x
2
t( ) = "B

1

+
e
i!1t " B

1

"
e
" i!1t + B

2

+
e
i!2 t + B

2

"
e
" i!2 t .

 (10.11) 

 
We see from this last set of equations that the position of the particles are both functions 
of the two frequencies !

1
 and !

2
, The two degrees of freedom x

1
t( )  and x

2
t( )  are not, 

therefore, independent of each other. We would like to find out if there exists a 
transformation that will lead to a new set of coordinates that would be decoupled along 
the different modes of oscillation. Inspection of equations (10.11) suggests an obvious 
candidate. That is, if we introduce the following new coordinates 
 

 
!
1
= x

1
" x

2

!
2
= x

1
+ x

2
,
 (10.12) 

 
or, 
 

 
x
1
=
1

2
!
1
+!

2( )

x
2
=
1

2
!
2
"!

1( ),
 (10.13) 

 
and we substitute this last set of equations into equations (10.5) we find 
 

 
 

M !!!
1
+ !!!

2( ) + " + 2"
12( )!1 +"!2 = 0

M !!!
1
# !!!

2( ) + " + 2"
12( )!1 #"!2 = 0.

 (10.14) 

 
By adding and subtracting the last two equations, we easily solve this system to obtain 
 

 
 

M !!!
1
+ " + 2"

12( )!1 = 0

M !!!
2
+"!

2
= 0.

 (10.15) 

 
We can proceed as was done for x

1
t( )  and x

2
t( )  to find that  
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!
1
t( ) = C1

+
e
i"1t + C

1

#
e
# i"1t

!
2
t( ) = C2

+
e
i"2 t + C

2

#
e
# i"2 t ,

 (10.16) 

 
where the frequencies !

1
 and !

2
 are as defined by equations (10.10). We see from 

equations (10.15) and (10.16) that !
1
t( )  and !

2
t( )  are decoupled and independent. 

The constants C
i

±  are to be determined from the initial conditions. For example, if we 
have x

1
0( ) = !x

2
0( )  and 

 
!x
1
0( ) = ! !x

2
0( ) , then 

 
!
2
0( ) = !!

2
0( ) = 0  and C

2

+
= C

2

!
= 0 ; 

that is, !
2
t( ) = 0  at all times. We find that in this case the particles oscillate out of phase 

with each other at frequency !
1
; this is the anti-symmetrical mode of oscillation. 

Conversely, if we set x
1
0( ) = x

2
0( )  and 

 
!x
1
0( ) = !x

2
0( ) , we find that !

1
t( ) = 0  at all 

times. The particles then oscillate in phase with each other at frequency !
2
; this is the 

symmetrical mode of oscillation. These modes are illustrated in Figure 10-2. 

10.2 The General Problem of Coupled Oscillations 
We now consider a general problem of a conservative system with n  degrees of freedom 
and a corresponding set of generalized coordinates qk , with k = 1,2, ... ,n . We suppose 
that there exists a configuration where the system is at equilibrium, with the generalized 
coordinates having values qk0 . We expand the potential energy U  of the system with a 
Taylor series around this configuration of equilibrium 
 

 

 

U q
1
,q

2
, ... ,qn( ) =U0

+
!U

!qk 0

qk " qk0( )

+
1

2

!
2
U

!qj!qk
0

qj " qj0( ) qk " qk0( ) +…

 (10.17) 

 

where we neglected any terms of higher than second order, and summation over repeated 
indices is implied. We can arbitrarily set the first term on the right hand side U

0
 (the 

potential energy at equilibrium) to zero since the potential energy can only be defined up 
to a constant; therefore, U

0
! 0 . Moreover, the existence of an equilibrium configuration 

implies that the first derivative of the potential energy relative to each generalized 
coordinate evaluated at the corresponding positions of equilibrium (i.e., at qk0 ) is also 
zero. That is, 
 

 !U

!qk 0

= 0,  (10.18) 

 
and U  is at a minimum when qk = qk0 . Finally, if we further simplify the notation by 
setting qk0 ! 0 , we can approximate the potential energy by 
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Figure 10-2 – The two modes of oscillation. The anti-symmetrical mode is shown on the 
left, and the symmetrical mode on the right. 
 

 U =
1

2
Ajkqjqk ,  (10.19) 

 
with 
 

 Ajk !
"
2
U

"qj"qk
0

.  (10.20) 

 
It is obvious from the form of equation (10.20) that Ajk  is symmetric (i.e., Ajk = Akj ). 

If the potential energy is a quadratic function of the generalized coordinates, as is evident 
from equation (10.19), we can use already derived results (see equations (4.81) and 
(4.82), page 74 of the lecture notes) for the kinetic energy of the system when the 
equations connecting the generalized coordinates and the Cartesian coordinates do not 
explicitly involve time. That is, if 
 
 x

! ,i = x! ,i qk( )       or      qk = qk x
! ,i( ),  (10.21) 

 
then the kinetic energy is given by  
 

 
 

T =
1

2
mjk
!qj !qk ,  (10.22) 

 
with 
 

 mjk = m!

"x! ,i

"qj!

#
"x! ,i

"qk
.  (10.23) 

 
As was the case for Ajk , mjk  is symmetric (i.e., mjk = mkj ). Just as we did for the 
potential energy, we can expand the expression for the quantities mjk  about the position 
of equilibrium; we then get 
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mjk q1,… ,qn( ) = mjk ql0( ) +
!mjk

!ql 0

ql +…  (10.24) 

 
However, in order to be consistent in the accuracy kept for both the potential and kinetic 
energies, we only keep the first term on the right hand side of equation (10.24). This way, 
both expressions are valid to the second order (in velocities for the kinetic energy, and in 
displacement for the potential energy). We then write 
 

 

 

T =
1

2
mjk
!qj !qk

U =
1

2
Ajkqjqk

 (10.25) 

 
with the understanding that mjk  consists only of the first term in the expansion on the 
right side of equation (10.24). 

We are now interested in solving for the equations of motion of the system, using the 
Lagrangian formalism. That is, 
 

 
 

!L
!qk

"
d

dt

!L
! !qk

#

$%
&

'(
= 0,  (10.26) 

 
which, in this case simplifies to 
 

 
 

!U
!qk

+
d

dt

!T
! !qk

"

#$
%

&'
= 0. (10.27) 

 
Using equations (10.25), the equations of motion are reduced to the following 
 
 

 

Ajkqj + mjk
!!qj = 0  (10.28) 

 
Equations (10.28) represent a set of coupled second-order differential equations with 
constant coefficients. Since we expect oscillatory motions, we propose a solution of the 
form 
 
 qj t( ) = aje

i ! t"#( )
,  (10.29) 

 
where the amplitudes aj  are real. Inserting this equation in equations (10.28), we find for 
the equations of motion 
 
 Ajk !"

2
mjk( )aj = 0  (10.30) 
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Alternatively, the system of equations (10.30) can be written in a matrix form  
 
 A !"

2
m( ) #a = 0,  (10.31) 

 
where the matrices A and m  are composed of the elements Ajk  and mjk , respectively 
(remember that A and m  are symmetric). In order to get a non-trivial solution to this 
equation, the determinant of the quantity in parentheses must vanish 
 
 A !"

2
m = 0. (10.32) 

 
This determinant is called the characteristic or secular equation and is an equation of 
degree n  in ! 2 . The corresponding n  roots !

r

2  are the characteristic frequencies or 
eigenfrequencies of the system. The eigenvector associated with a given root !

r
 can be 

evaluated by inserting it back in equations (10.30) to determine the ratios a
1
:a

2
: ... :a

n
 

(this is similar to what we did in Chapter 9 when determining the principle axes of the 
inertia tensor). If we represent by ajr  the jth  component of the rth eigenvector, we can 
write the generalized coordinate qj  as a linear combination of the solutions for each root 
 
 qj t( ) = ajre

i !r t"#r( )

r

$ .  (10.33) 

 
It is, however, understood that the actual solution must be real (in a mathematical sense) 
and we must, therefore, take real part of equation (10.33). That is, 
 
 q

j
t( ) = a

jr
cos !

r
t " #

r( )
r

$ .  (10.34) 

 
Example 
 
We apply the formalism just developed to the previous problem of the two masses 
connected by springs to find the characteristics frequencies. 
 
Solution. 
 
We know from equation (10.2) that  
 

 U =
1

2
! x

1

2
+ x

2

2( ) +
1

2
!
12
x
2
" x

1( )
2

.  (10.35) 

 
The elements of the matrix A  are therefore (from equation (10.20)) 
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A
11
=
!
2
U

!x
1

2

0

=" +"
12

A
12
= A

21
=

!
2
U

!x
1
!x

2 0

= #"
12

A
22
=
!
2
U

!x
2

2

0

=" +"
12
.

 (10.36) 

 
The kinetic energy of the system is 
 

 
 

T =
1

2
M !x

1

2
+ !x

2

2( ),  (10.37) 

 
and the elements of the matrix m  are, from equation (10.23), 
 

 
m
11
= m

22
= M

m
12
= m

21
= 0.

 (10.38) 

 
The determinant is then given by 
 

 
! +!

12
"#

2
M( ) "!

12

"!
12

! +!
12
"#

2
M( )

= 0,  (10.39) 

 
which is the same equation (10.7) that we obtained before. The eigenfrequencies are 
therefore unchanged at 
 

 !
1
=

" + 2"
12

M
, !

2
=

"

M
.  (10.40) 

 

10.3 Orthogonality of the Eigenvectors and the Normal Coordinates 
According to equation (10.30), we can write for the sth  root !

s
 

 
 ! s

2
mjkaks = Ajkaks ,  (10.41) 

 
and a similar one for the another root, say !

r
 

 
 ! r

2
mjkajr = Ajkajr ,  (10.42) 

 
where we used the symmetry of the m and A  matrices. We now multiply equation 
(10.41) by ajr  and the equation (10.42) by a

ks
, and subtract the two. We then find that 
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 ! r

2
"! s

2( )ajrmjkaks = 0.  (10.43) 
 
If r ! s  and !

r

2
" !

s

2 , then we must have that  
 
 ajrmjkaks = 0, r ! s.  (10.44) 
 
If r = s  (and, therefore, !

r

2
"!

s

2
= 0 ) then, the double product ajrmjkaks  may not 

vanish. This can, in fact, be verified by calculating the kinetic energy using equation 
(10.34) 
 

 

 

T =
1

2
mjk
!qj !qk

=
1

2
mjk ! rajr sin ! rt " #r( )

r

$
%

&
'

(

)
* ! saks sin ! st " # s( )

s

$
%

&
'

(

)
*

=
1

2
! r! s

r ,s

$ sin ! rt " #r( )sin ! st " # s( ) ajrmjkaks%& ().

 (10.45) 

   
But inserting equation (10.44) when r = s  and !

r

2
=!

s

2 , equation (10.45) reduces to 
 

 T =
1

2
! r

2
sin

2 ! rt " #r( )
r

$ ajrmjkakr%& '(,  (10.46) 

 
and since both T  and !

r

2
sin

2
!

r
t " #

r( )  are greater than zero, it must be that  
 
 ajrmjkakr > 0.  (10.47) 
 
Moreover, because we can only measure the ratios of the components ajr , we arbitrarily 
normalize them according to 
 
 ajrmjkakr = 1.  (10.48) 
 
On the other hand, if we have a case of degeneracy for one eigenvalue !

r

2  (i.e., r ! s  
but !

r

2
=!

s

2 ), we cannot outright say that equation (10.44) is satisfied (since 
!

r

2
"!

s

2
= 0  in equation (10.43)). However, it turns out that we can always ensure that 

this is so (i.e., that ajrmjkaks = 0 ). For example, if we assume that two different vectors 

a
r
 and a

s
 share the same eigenfrequency ! 2 , then we can also say from equation (10.31) 

that 
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 A !a
i
="

2
m !a

i
,  (10.49) 

 
with i = r, s . These two vectors bring six unknowns (one per component), for which we 
can match two equations of motions (i.e., from equation (10.49)), one equation to ensure 
the sought after orthogonality of the vectors (i.e., ajrmjkaks = 0 ), and two equations to 
normalize the vectors (i.e., ajrmjkakr = 1 , and a similar equation for s ). This gives us five 
equations for six unknowns. The fact that we have fewer equations than unknowns 
ensures non-trivial solutions (we can, for example, arbitrarily set the value of one of the 
unknowns and solve for the remaining five unknowns using the five aforementioned 
equations). Thus, we can show that the orthgonality between eigenvectors is respected 
even in the case of degeneracy in the values of the eigenfrequencies.  

We can, therefore, combine equations (10.44) and (10.48) to get, for any r  and s , the 
following relation  
 
 ajrmjkaks = !rs  (10.50) 

 
We say that the eigenvectors are orthonornal, in the sense defined in this last equation. 
It is customary to refer to the frequencies !

r
 as being the different modes of oscillation 

of the system. The vectors a
r
 are the corresponding eigenvectors associated with these 

modes. It is important to note that we have now imposed a normalization constraint on 
the eignvectors that was not assumed when we initially solved the problem with equation 
(10.29) for the generalized coordinates qj t( ) . We must therefore introduce a new set of 
quantities !

r
 that are to be multiplied to the vectors a

r
. More precisely, we now have 

 
 qj t( ) = ! rajre

i "r t#$r( )

r

% ,  (10.51) 

 
which we promptly simplify by introducing yet another constant (but, this time complex) 
!
r
= "

r
e
i#
r  such that 

 
 qj t( ) = !rajre

i"r t

r

# .  (10.52) 

 
We further define the so-called normal coordinates !

r
 as 

 
 !

r
t( ) " #

r
e
i$

r
t  (10.53) 

 
so that 
 
 q

j
t( ) = a

jr
!
r
t( )

r

"  (10.54) 
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Finally, it fairly straightforward to show, using the orthonormality condition of equation 
(10.50), that the form of the kinetic and potential energies are significantly simplified by 
the use of the normal coordinates. A few lines of calculations reveal that 
 

 

 

T =
1

2
!!
r

2

r

"

U =
1

2
#

r

2!
r

2

r

" .

 (10.55) 

 
Applying the Lagrange equations to these two equations we get 
 
 

 
!!!
r
+"

r

2
!
r
= 0.  (10.56) 

 
We have the interesting result that this new system of second-order differential equations 
is completely decoupled, i.e. we have n  independent equations of motions.  
 
Example 
 
Three linearly coupled plane pendula. Three identical pendula of mass M  and length l  
are suspended from a slightly yielding rod, which brings a certain amount of coupling !  
between each pair of pendula (see Figure 10-3). Find the eigenfrequencies, eigenvectors, 
and the normal modes of oscillation. Consider only the case of small oscillations. 
 
Solution.   
We start by evaluating the kinetic and potential energies; we have 
 

 

 

T =
1

2
Ml

2 !!
1

2
+ !!

2

2
+ !!

3

2( )

U = Mgl 1" cos !
1( )#$ %& + 1" cos !

2( )#$ %& + 1" cos !
3( )#$ %&{ }

+
1

2
' !

1
"!

2( )
2

+ !
1
"!

3( )
2

+ !
3
"!

2( )
2#

$
%
&
.

 (10.57) 

 
In the case of a small oscillation, we have 
 

 
 

1! cos "( ) ! 1! 1!
1

2
" 2#

$%
&
'(
=
1

2
" 2 ,  (10.58) 

 
so we can re-write the potential energy as  
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Figure 10-3 – Three identical pendula that are coupled through a lightly yielding rod. 
 

 
U =

1

2
Mgl !

1

2
+!

2

2
+!

3

2( ) +
1

2
" !

1

2
+!

2

2
+!

3

2 # 2!
1
!
2
# 2!

1
!
3
# 2!

3
!
2( )

=
1

2
$ !

1

2
+!

2

2
+!

3

2 # 2%!
1
!
2
# 2%!

1
!
3
# 2%!

3
!
2( ),

 (10.59) 

 
with  
 

 ! = Mgl +" , # =
"

Mgl +"
=
"

!
. (10.60) 

 
The transformation between the Cartesian to the polar coordinates is given by 
 

 

 

x! ,1 = l sin "!( ) ! l"!

x! ,2 = l 1# cos "!( )$% &' !
1

2
l"!

2
,
 (10.61) 

 
for ! = 1, 2, 3  (depending on the pendulum). We must use equation (10.23) to determine 
the elements of the matrix m , that is 
 

 mjk = m!

"x! ,i

"# j!

$
"x! ,i

"#k

.  (10.62) 

 
Inserting equations (10.61) in equation (10.62) we find 
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m
11
= Ml

2
1+ !!

1

2( )

m
22
= Ml

2
1+ !!

2

2( )

m
33
= Ml

2
1+ !!

3

2( )
m
12
= m

13
= m

23
= 0.

 (10.63) 

 
However, we must remember from the discussion following equation (10.24) that since 
we want to keep the precision of the potential energy to the second-order in the 
generalized coordinates, we must only keep the lowest order terms in equations (10.63). 
We therefore make the following approximation 
 
 m

11
= m

22
= m

33
= Ml

2
,  (10.64) 

 
and 
 

 m = Ml
2

1 0 0

0 1 0

0 0 1

!

"

#
#
#

$

%

&
&
&

.  (10.65) 

   
Using equation (10.20) we can directly evaluate the matrix A  from equation (10.59) for 
the potential energy 
 

 A = !

1 "# "#

"# 1 "#

"# "# 1

$

%

&
&
&

'

(

)
)
)

. (10.66) 

 
We must now evaluate the following determinant to determine the eigenfrequencies 
 

 A !" 2
m =

# !" 2
Ml

2
!#$ !#$

!#$ # !" 2
Ml

2
!#$

!#$ !#$ # !" 2
Ml

2

= 0.  (10.67) 

 
Expanding this determinant, we have 
 
 ! "# 2

Ml
2( )
3

" 2! 3$ 3 " 3! 2$ 2 ! "# 2
Ml

2( ) = 0,  (10.68) 
 
which can be factored into 
 
 ! 2

Ml
2
" # " #$( )

2

! 2
Ml

2
" # + 2#$( ) = 0.  (10.69) 

 
The roots are therefore 
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!
1

2
=!

2

2
=
" 1+ #( )

Ml
2

=
Mgl + 2$

Ml
2

!
3

2
=
" 1% 2#( )

Ml
2

=
Mgl %$

Ml
2
.

 (10.70) 

 
We notice from the first of equations (10.70) that the system is degenerate, since 
!
1

2
=!

2

2 . 

Having evaluated the eigenfrequencies, we can insert them back into the equations of 
motion to find the eigenvectors a

r
. That is, starting with !

3

2 , 

 

 Ajk !" 3

2
mjk( )aj3 = 0,  (10.71) 

 
or 
 

 
2!"a

13
# !"a

23
# !"a

33
= 0

#!"a
13
+ 2!"a

23
# !"a

33
= 0.

 (10.72) 

 
We only used two of the three equations of motion since we only have two unknowns 
(i.e., two ratios taken from the components of a

3
). The third equation of motion will 

automatically be satisfied. From equations (10.72) we find  
 

 a
13
= a

23
= a

33
=
1

3
,  (10.73) 

 
where the vector was normalized. 

For the degenerate case, we insert !
1

2
(=!

2

2
)  in the equations of motion to calculate 

a
1
 and a

2
. This yields  

 

 
!"# a

11
+ a

21
+ a

31( ) = 0

!"# a
12
+ a

22
+ a

32( ) = 0.
 (10.74) 

 
The orthogonality condition aj1mjkak2 = 0 , and the normalization conditions (imposed on 
the eigenvectors) respectively give 
 

 

Ml
2
a
11
a
12
+ a

21
a
22
+ a

31
a
32( ) = 0

a
11

2
+ a

21

2
+ a

31

2
= 1

a
12

2
+ a

22

2
+ a

32

2
= 1.

 (10.75) 
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We therefore have five equations for six unknowns, which guaranties non-trivial 
solutions. If we arbitrarily set a

11
= 0 , we have from the first of equations (10.74) and the 

second of equations (10.75) that 
 

 a
21
= !a

31
=
1

2
.  (10.76) 

 
Then, from the first of equations (10.75) and the second of equations (10.74) 
 

 a
22
= a

32
= !

1

2
a
12
,  (10.77) 

 
and, finally, from the last of equations (10.75) 
 

 a
12
=

2

3
.  (10.78) 

 
The three eigenvectors can be written as 
 

 

a
1
=
1

2
0, 1, !1( )

a
2
=
1

6
2, !1, !1( )

a
3
=
1

3
1, 1, 1( ).

 (10.79) 

 
We see that the third normal mode corresponds to an in-phase oscillation with the three 
pendula moving in the same direction with the same amplitude. On the other hand, the 
first two normal modes have an out-of-phase character. In the first mode the second and 
third pendula are moving in opposite directions with equal amplitude, while in the second 
mode the first pendulum is moving in opposite direction of the other two, and at twice 
their amplitude. 


